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Abstract

This thesis presents optimal trajectory planning for an aeroassisted orbital

transfer vehicle executing a co-planar maneuver from a circular high earth

orbit to a circular low earth orbit, where only that part of the trajectory

carried out within the earth’s atmosphere is considered for optimization.

The optimal trajectory is obtained for minimal control effort with fixed ter-

minal time while satisfying the desired boundary conditions by developing

the optimization problem into a nonlinear two-point boundary value prob-

lem. Numerical results are compared with those of an approximate optimal,

free terminal time scheme and observed to have a significant reduction in

the magnitude of the maximum control input, control power, and maximum

heating rate. Apart from the above advantages, it is also observed that the

optimal control law obtained for the given boundary conditions is linear in

time, making it easier to implement. A closed-form approximation is de-

veloped for the states of the vehicle, when the control law is linear in time.

A two-point boundary value problem which satisfies the desired boundary

conditions for perturbed initial conditions with a time-linear control input

is obtained and solved for the initial control input, the rate of change of the

control input with respect to time and the terminal time. This solution is

compared to that of the optimal control law for the new terminal time and is

v



observed that the latter oscillates about the former making the total control

effort approximately equal which indicates that the predictive time-linear

control law for the perturbed initial condition is an approximate optimal

solution. The above methodology is compared with a fixed terminal-time

LQR tracking system and the time-linear control law is observed to offer sig-

nificant savings in terms of the total control effort along with providing an

easily implementable predictive time-linear control law. In order to compen-

sate for the uncertainty involved in estimating the parasite drag coefficient,

an adaptive control system is implemented and shown to exhibit satisfactory

performance.
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1

Introduction

In the realm of spacecraft dynamics and control, the ability of a spacecraft to

be able to be transferred from one orbit to another is considered a great boon. As

the activity of putting a spacecraft into a specific orbit in itself is very expensive, one

would prefer having the freedom of being able to take it from one orbit to another.

Early efforts towards achieving orbital transfer included using a propulsive maneuver

where the thrust of the spacecraft is used to change the direction and magnitude of

its velocity vector. In reality, the thrust applied is only for a very brief period of time.

Hence, it can be considered as an impulse. Orbital transfer can be implemented to

achieve a change in angle of inclination, eccentricity and distance from periapsis of a

spacecraft in a given orbit. If the initial and the desired final orbits intersect with

each other, then it is possible to achieve the maneuver using only one impulse. In the

case where they don’t, one would require at the least two impulses to carry out the
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1. INTRODUCTION 2

maneuver where the first one is called the de-orbit impulse and the second one is called

the re-orbit impulse. Aeroassisted orbital transfer (AOT) originated from the idea of

using the de-orbit impulse to dip a spacecraft into a planet’s atmosphere and use the

atmospheric forces to achieve the desired conditions at the exit so as to collectively

reduce the expenditure involved in producing the de-orbit and re-orbit impulses. As

expected, a typical spacecraft cannot sustain the aerothermodynamic loads involved

during re-entry. At the same time, a re-entry vehicle is designed to sustain much

higher loads than that experienced during an AOT maneuver which clearly indicates

that AOT maneuver requires a specially designed vehicle called the aeroassisted orbital

transfer Vehicle.

1.1 Classification of Aeroassisted Orbital Transfer

Aeroassisted orbital transfer is a rather general term used in multitude of contexts,

essentially to describe the use of atmospheric forces to control the exit conditions.

Aeroassist can be considered for any mission that requires a change in orbit and if

the vehicle is in the vicinity of a planet with a significant atmosphere. This includes

various types of missions and maneuvers, each of them are classified below:

1.1.1 Types of Missions

Every mission has a goal that defines the mission, classification based on the type of

mission is in essence classification on the basis of the goal required to be achieved
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Figure 1.1: Plane Change Maneuver



1. INTRODUCTION 4

pertaining to the change of orbit. Considering the fact that change of orbit includes

various scenarios, the types of missions which are a candidate for using aeroassist are

described below:

1.1.1.1 Plane Change Maneuver

Plane change maneuver is used essentially to change the inclination of the orbit, with

no major change in the orbital altitude. In general, it is used to transfer the vehicle

from one Low Earth Orbit (LEO) to another with significant change in the angle of

inclination, occasionally as high as 60◦. The plane change is achieved by using a deorbit

impulse from a LEO and dipping the vehicle into the atmosphere and then banking

it to use the component of lift vector to facilitate the change in inclination. After the

requisite inclination in plane is achieved, the vehicle is then put into another LEO by

applying a deorbit impulse as described in Fig. 1.1. A typical vehicle used to carry

out this maneuver is expected to be slender with a high Lift-Drag ratio and housing

blended wing bodies with refractory metal thermal protection systems for reusability

[1].

1.1.1.2 HEO-LEO Orbital Transfer

A HEO-LEO orbital transfer would typically require a transfer from a circular HEO

to a circular LEO with no plane change required. A deorbit impulse is applied at the

HEO to instantly reduce the velocity of the spacecraft, in order to decrease the perigee

altitude of the elliptical transfer orbit. The perigee altitude should be small enough so
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Figure 1.2: HEO-LEO Aeroassisted Orbital Transfer



1. INTRODUCTION 6

that the spacecraft would reenter the Earth’s atmosphere, use the aerodynamic drag

to achieve a significant decrease in the length of the semi major axis. Then, another

elliptical transfer orbit would be followed by the spacecraft after leaving the Earth’s

atmosphere with a reduced semi major axis and a reorbit impulse is applied at its

apogee to put the spacecraft in to the desired circular LEO as shown in Fig. 1.2.

The typical vehicle used to carry out such a mission is expected to be a cylindrical

body with an ellipsoidal nose and a high lift-drag ratio. This vehicle is expected to

experience high aerothermodynamic loading and might require a change in ablative

shielding which would effect the operational utility of the vehicle [1]. Hence, there is

an increasing need to reduce the aerothermodynamic loads on the vehicle. The present

work considers this mission and emphasizes on reducing the control effort and heating

rate.

1.1.1.3 Planetary Mission

Planetary missions are deep space missions from one planet to another where the entry

trajectory is a hyperbolic one and the goal is to put the vehicle into a specific orbit

around the planet, which is typically a circular or near circular orbit. A vehicle which

is expected to carry out such missions is expected to have a circular cross section with

a blunt spherical nose cone where the typical lift to drag ratios are lesser than that

of the vehicles used in the other two missions. The emphasis for these missions is on

using the atmosphere of the planet as a braking device to reduce the velocity of the
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vehicle. There are two types of missions under this category, namely

1. Aerocapture: As the entry trajectory from one planet to another is hyperbolic,

the vehicle is allowed to enter into the planet’s atmosphere, carry out a deep

atmospheric pass to achieve the required velocity loss to put the vehicle into a

low altitude circular orbit.

2. Multipass Aerobraking: During the approach from a hyperbolic entry trajec-

tory, a considerably large propulsive force (retro rocket) is applied to achieved

the requisite velocity loss to transfer the vehicle from the hyperbolic trajectory

to a highly elliptical one. Then, a series of aerobraking passes are executed to

slowly circularize the orbit until the vehicle falls into the desired orbit. Every

atmospheric pass is followed by corrective rocket burns at apoapsis to ensure that

the periapsis altitude is low enough to provide the requisite deceleration and high

enough to avoid excess heating rate. Once the eccentricity of the the elliptical

orbit approaches close to zero, a circularization impulse is applied to raise the

periapsis altitude and put the spacecraft into the desired circular orbit as shown

in Fig. 1.3.

1.1.2 Types of Maneuvers

AOT is classified based on the types of maneuvers that can be employed to achieve

each of the above possible missions. Some of them are listed below:
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Figure 1.3: Aerocapture and Aerobraking
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1.1.2.1 Aerogravity Assist

An aerogravity assist maneuver is carried out by an AOT vehicle where it dips into

a planet’s atmosphere, uses the lifting force to change the flight path angle and then

uses the gravitational force of the planet to change its velocity. The present work uses

aerogravity assist to carry out an orbital transfer.

1.1.2.2 Aerocruise

Aerocruise maneuver is typically used in synergetic plane change missions where the

AOT vehicle dips into the atmosphere finds an altitude at which the drag would equal

the thrust applied and uses the components of lift and gravity for plane change.

1.1.2.3 Aeroglide

Aeroglide, used for aerobraking and synergetic plane change missions, on the other

hand does not involve any propulsive forces, instead glides into the atmosphere and

uses appropriate control surfaces to achieve the required mission goal.

1.2 Review of Literature

The concept of utilizing a planet’s atmosphere in order to achieve an orbital plane

change as opposed to an all propulsive maneuver opened up a field called aeroassisted

orbital transfer (AOT) which has led to active research in the past few decades [1]. The

synergetic plane change maneuver that is essentially used in low Earth orbits (LEO)
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led to the development of an AOT maneuver from a high Earth orbit (HEO) to a

LEO involving a significant decrease in the inertial speed. This is done by applying a

deorbit impulse at the HEO and dipping the vehicle into the atmosphere, carrying out

a pull-up maneuver where it uses the atmospheric drag to decelerate and then putting

the vehicle into a LEO by applying a reorbit impulse at a given altitude. In certain

cases, this maneuver might not include a considerable plane change, for such cases

it is safe to assume planar motion [2]. The idea of aeroassisted orbital transfer was

extended to planetary approach missions by introducing the concept of aerocapture

where a hyperbolic planetary approach trajectory is converted into an elliptic orbit

about the planet’s center using the aerodynamic drag experienced by the spacecraft

in the upper reaches of its atmosphere. The spacecraft can transfer from one orbit to

another using aerobraking which essentially uses the concomitant atmospheric drag as

an aerodynamic brake to shed excess velocity, in order to change the eccentricity of

its orbit. Kumar and Tewari [3, 4] presented a strategy for trajectory and attitude

simulation of a planetary approach mission to Mars and Earth respectively, where an

aerocapture maneuver is followed by a series of aerobraking passes to achieve the de-

sired near circular orbit taking the presence of storms and diurnal variations of the

martian atmosphere into consideration.

The extent of deceleration required for these maneuvers raised important questions

about the heating rate of the spacecraft. It was also observed that the rate of heat

transfer to the spacecraft played a major role in deciding the performance of such a
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vehicle and in assessing the overall cost of the mission [5]. In order to fully exploit the

advantages of an aeroassisted maneuver, it is important to minimize the control effort

through optimization. Interesting research in the field of optimal aeroassisted orbital

transfer with heating rate constraints was presented in [6, 7]. The former discusses

the optimal trajectory for a synergetic plane change maneuver using steady aero cruise

with heating rate path constraint and proved that the optimal thrust usage is sensitive

to the heating rate limit chosen and emphasizes on the need to choose this value judi-

ciously. Whereas, the latter describes that fuel-optimal strategies lead to higher heat

transfer rate to the spacecraft, thus increasing the thermal protection mass which in

turn could reduce fuel savings. Hence, emphasis was put on obtaining optimal trajec-

tories with heating rate path constraints minimizing the propellant and the thermal

protection mass.

The governing equations for reentry dynamics are nonlinear differential equations

and do not generally have closed-form analytical solutions. Early efforts were made

to obtain approximate closed-form analytical solutions which provided researchers an

alternative over time consuming iterative numerical methods. Loh [8] presented a

myriad of closed-form first order approximate analytical solutions for various reentry

problems. The difference between the inertial and gravitational forces was assumed to

be constant, which will be the case when aerodynamic forces dominate as they would

during reentry. Beyond designing an optimal trajectory, it is important to consider

the implementation of a feedback controller in order to ensure that the vehicle follows
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the desired path. Due to non-linearity of the solution of an optimal control problem,

the implementation may not be straight forward. In the last two decades, the focus

from designing better optimal trajectories has shifted to designing implementable and

practically applicable near-optimal trajectories [9, 10]. It is also important to note that

the easiest control algorithm to implement, apart from a constant control profile, is a

linearly varying control profile with time using a simple timing (or clockwork) mech-

anism. Hence, a time-linear control profile is quite valuable if it can be demonstrated

that such a control results in an optimal AOT. In such a case, there is no need to

solve an online 2PBVP optimization problem for determining the nominal trajectory,

which is typically required for other methods [9, 10, 11]. Mishne et al. [9] assumed

that the aerodynamic force at reentry altitudes is much larger than the inertial and

gravitational forces, expressed the feedback control law as a series expansion of the

ratio of the atmospheric scale height to the radius of the earth and obtained zeroth

order and first order solutions by truncating the series expansion to the first and second

terms respectively. Whereas, Shen and Lu [11] emphasized on the need for onboard

entry trajectory generation with inequality path constraints and terminal conditions

precisely met. Though the computational effort is reduced by simplifying the complex-

ity involved in satisfying the path constraints by using the bank angle obtained from

the equilibrium glide condition at every instant of time, it still requires relatively high

computational effort as it uses a linear time varying feedback control law. Naidu et

al. [12], on the other hand, obtained a deterministic optimal trajectory for a given set
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of boundary conditions and acknowledged that initial conditions of the spacecraft at

reentry can marginally deviate from the expected ones. In order to compensate for such

deviations, they developed an optimum control guidance law which is a combination

of the deterministic trajectory obtained and the trajectory obtained using a stochastic

model for the linearized state equations. Though, each of the strategies used in these

cases have their own merits, they do not result in an easily implementable time linear

optimal control law. It would be ideal to obtain such a control law without compro-

mising much on accuracy.

The present work deals with optimal trajectory planning for coplanar orbital trans-

fer of an AOT vehicle from a HEO to a LEO. Such a maneuver would also include

the deorbit and reorbit impulses which are not considered during optimization. The

mathematical model for the reentry trajectory of an AOT vehicle is discussed, followed

by the development of optimization problem, obtaining the Euler-Lagrange equations,

boundary conditions and the optimal control law. This is followed by the development

of the 2PBVP from the optimization problem and its numerical solution. The control

profile obtained from the numerical solution was observed to be linear in time, an ap-

proximate closed-form solution of the state equations for a time linear control profile is

derived. Additionally, a terminal-time tracker is designed to meet the exit conditions

despite deviations in the initial conditions. An alternate method, hereafter referred

as predictive time-linear control, is suggested. This method is a novel idea where the

final time is changed to accommodate the deviations in initial state and the control
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law thus obtained is easily implementable due to its linearity in time. The results are

compared to that of the terminal tracking system and are observed to involve smaller

control effort in the case of predictive time-linear control. Additionally, an adaptive

control system is designed to take into account the uncertainty in the coefficient of drag

arising due to the change in angle of attack. It is observed that the adaptive control

system satisfactorily meets the exit conditions despite the uncertainty in coefficient of

drag.



2

Mathematical Model

Let us consider the motion of an AOT vehicle referenced to a non-rotating, spherical

planet (Earth) at the boundary of its atmosphere. The motion is restricted to a plane

formed by the radial vector and the line of apsides of the initial orbit (HEO). The state

of the spacecraft completely describes the position and the rate of change of position

at any instant of time on this plane. In order to describe the position of a body on

such a plane, we would require two quantities; the radial distance of the vehicle from

the center of the earth r and the latitude δ. Similarly, in order to describe the rate of

change of position, we would require two more quantities; the velocity of the vehicle

v and the angle made by the velocity vector with the local horizon frame called the

flight path angle γ (by convention, the angle measured above the horizon is considered

positive) as shown in Fig. 2.1. These four quantities completely describe the state of

an AOT vehicle and its equations of motion provide us with the state equations (see

15
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Figure 2.1: Co-ordinate axes at local horizon

[13]):

dr

dt
= v sinγ (2.1)

r
dδ

dt
= v cosγ (2.2)

m
dv

dt
= −mg sinγ −D (2.3)

mv
dγ

dt
=
mv2

r
cosγ −mg cosγ + L (2.4)

Equations (2.1) and (2.2) are the kinetic equations of motion and can be obtained

from Fig. 2.1, while Eq. (2.3) and (2.4) are kinematic equations of motion which can

be obtained from the free body diagram given in Fig.2.2. The latitude δ, though
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Figure 2.2: Free body diagram

dependent on the other state variables does not influence them in anyway. Hence, the

equation for δ is excluded from the state equations. It is to be noted that L (force due

to Lift) is the only control input in the state equations as the induced drag is neglected.

2.1 Assumptions:

1. Motion of the vehicle is restricted to a plane, as a typical AOT maneuver from

a higher Earth circular orbit to a low Earth orbit does not include considerable

plane change. Hence, it is valid to assume planar motion.

2. Effect of rotation of the planet on the vehicle is neglected, as the relative wind

speed at a typical reentry altitude is equal to that of the spacecraft.
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3. Acceleration due to gravity (g) is assumed to be constant, as the ratio of the

maximum change in altitude during the maneuver to the radial distance from the

center of the Earth is negligible.

4. Variation of density of the atmosphere with respect to altitude is assumed to be

exponential and is given by (2.5). This assumption is valid at reentry altitudes

and a comparison with standard atmosphere is given in [13].

ρ = ρse
−h/H (2.5)

5. Only parasite drag accounts for the total drag, as the induced drag is small enough

to be neglected and the expression for the drag co-efficient is given by (2.6).

CD = CD0 =
D

(1/2)ρv2S
(2.6)
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2.2 State Equations

The state equations for the AOT vehicle can be written as follows:


ṙ

v̇

γ̇


=


v sinγ

−g sinγ −Ke−
(r−Re)
H v2

(v/r − g/v) cosγ + u/v


; (2.7)

K =
ρsCD0

2(m/S)
(2.8)

u = L/m. (2.9)

Tao et al. and Shen, Lu [10, 11] emphasize on the importance of constraining the

heating rate, magnitude of aerodynamic forces and free stream dynamic pressure. The

choice of u (L/m) as a control variable is ideal, as it has a one-to-one relationship with

free stream dynamic pressure, magnitude of net aerodynamic force (which depends on

dynamic pressure and CL, the product of which is proportional to u) and the heating

rate depends on the product of dynamic pressure and velocity. Hence, minimizing

u would mean reducing all the above quantities, one way or the other. The AOT

maneuver requires the vehicle to reach specific exit conditions, thus leading to a two-

point boundary value problem (2PBVP).



3

Euler-Lagrange Formulation

An optimization problem can be described as obtaining a control law for a system

of state equations while minimizing an objective function for a given set of initial

conditions and final conditions, where the state equations give the trajectory followed

by the vehicle for a given control law. The Euler-Lagrange equations are the necessary

conditions for optimality which emerge from the fact that optimality is achieved at

a stationary point. The solution of the Euler-Lagrange equations from t0 to tf gives

us the stationary points of the system for which the given objective function is at its

extrema throughout the interval.

Theorem. Let x ∈ R3 and u ∈ R represent the state space and the control space of a

given system and the evolution of the states with respect to time be given by,

ẋ = f(x, u) (3.1)

20
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where f : R3 × R→ R3. Let the objective function to be minimized be given by,

J =

∫ tf

t0

L(x, u)dt (3.2)

where L : R3 × R → R represents the Lagrangian or cost function. Let the above

minimization problem be constrained by the initial and final states of the system, x(t0)

and x(tf ) respectively, then the necessary conditions for minimization are given by the

Euler-Lagrange Equations given below (see [14] and [15]):

ẋ =

(
∂H
∂λ

)T
(3.3)

λ̇ = −
(
∂H
∂x

)T
(3.4)

∂H
∂u

= 0 (3.5)

where,

H(x, u) = L(x, u) + λT f(x, u) (3.6)

is the Hamiltonian of the function with H : R3 × R→ R and λ ∈ R3.

Proof. Consider the objective function, given in (3.2)

J =

∫ tf

t0

L(x, u)dt (3.7)
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and adjoin the Lagrangian (L) with (3.1) using a vector of Lagrangian multipliers λ

where λ ∈ R3

J̄ =

∫ tf

t0

(L(x, u) + λT (f(x, u)− ẋ))dt (3.8)

J̄ =

∫ tf

t0

(L(x, u) + λT f(x, u))dt−
∫ tf

t0

λT ẋdt (3.9)

Let,

H(x, u) = L(x, u) + λT f(x, u) (3.10)

where H : R3 × R→ R is called the Hamiltonian. Using (3.10) in (3.9), we have

J̄ =

∫ tf

t0

H(x, u)dt−
∫ tf

t0

λT ẋdt (3.11)

By using integration by parts on the second integral, we have

J̄ = −[λTx]
tf
t0 +

∫ tf

t0

H(x, u)dt+

∫ tf

t0

λ̇
T
xdt (3.12)

Using calculus of variations, considering a variation in J̄ due to variations in u and x

for fixed times t0 and tf we have

δJ̄ = −(λTδx)t=tf + (λTδx)t=t0 +

∫ tf

t0

((
∂H
∂x

+ λ̇
T
)
δx +

(
∂H
∂u

)
δu

)
dt (3.13)
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Let,

λ̇
T

= −∂H
∂x

(3.14)

∂H
∂u

= 0 (3.15)

and considering the fact that the states of the system are fixed at t0 and tf , we have

δx(t0) = 0 (3.16)

δx(tf ) = 0 (3.17)

Using (3.14)-(3.17) in (3.13), we have

δJ̄ = 0 (3.18)

which is the necessary condition for optimality. Hence (3.14), (3.15) along with the

state equation (3.1) form the necessary conditions for optimality.

The Euler-Lagrange equations (3.3)-(3.5) coupled with the boundary conditions,

form a two-point boundary value problem which can be solved for u.

For the AOT vehicle under consideration (2.7) it is desired to carry out an orbital

transfer from a HEO orbit to a LEO orbit where the vehicle reenters the atmosphere

at a radius r0, velocity v0 and flight path angle γ0. It is also expected to exit the

atmosphere at a radius rf , velocity vf and flight path angle γf within time tf . It is
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desired to minimize the control effort (u) of the spacecraft throughout the maneuver.

For the given optimization problem, x = {r v γ}T , λ = {λr λv λγ}T , x(t0) =

{r0 v0 γ0}, x(tf ) = {rf vf γf}, φ = 0 and L = Ru2 where R is a positive real

number. The co-state equations for this optimization problem are given by:

λ̇ =


−λvKe−( r−ReH )v2/H + λγv cosγ/r2

−λr sinγ + 2λvKe−( r−ReH )v − λγ ((1/r + g/v2) cosγ − u/v2)

−λrv cosγ + λvg cosγ + λγ ((v/r − g/v) sinγ)


(3.19)

The optimal control law can be derived from (3.5) and is given by:

u = − λγ
2Rv

(3.20)

(3.20) can be substituted into (3.19) and (2.7) to obtain the following system of equa-

tions:


ẋ

λ̇

 =



v sinγ

−g sinγ −Ke−( r−ReH )v2

(v/r − g/v) cosγ − λγ/2Rv2

−λvKe−( r−ReH )v2/H + λγv cosγ/r2

−λrsinγ + 2λvKe−( r−ReH )v − λγ ((1/r + g/v2) cosγ + λγ/2Rv
3)

−λrv cosγ + λvg cosγ + λγ ((v/r − g/v) sinγ)


(3.21)
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The boundary conditions describe the state of the system (AOT vehicle) either com-

pletely or partially at t0 and tf . The de-orbit impulse applied at the initial orbit (HEO)

decides the state of the system at t0 and is assumed to be known. As discussed in [9],

for such a maneuver typical initial altitude lies between 70 − 100km, initial velocity

lies between 8 − 10km/sec and the reentry flight path angle is not more than a few

degrees (pointing downwards or negative). The boundary conditions are given by:

x(t0) =


r0

v0

γ0


; x(tf ) =


rf

vf

γf


; (3.22)

Equations (3.21) and (3.22) form a two-point boundary value problem (2PBVP) which

does not have a closed form analytical solution and hence a numerical method has to

be used in order to obtain u .



4

Optimal Trajectory Solution

4.1 Solution of 2PBVP

Equations (3.21) and (3.22) are solved using a collocation method by dividing the

entire interval into several sub-intervals by setting up collocation points, and approxi-

mating solution in each sub-interval by a cubic spline collocated at the mid-point. The

collocated polynomials are substituted in the continuous-time differential equations to

convert them into a system of difference equations which when used along with the

boundary conditions and solved for coefficients of the cubic splines, result in the solu-

tion of the 2PBVP [16]. The results are presented in Fig 4.1 and compared with the

solution obtained in [9] for the case of pull-up maneuver using data of Table 4.1.

Mishne et al. [9], as described in the Introduction, obtains an approximate optimal

guidance law for an AOT vehicle executing a planar orbital transfer maneuver. The

reentry conditions used in [9] and in the present case are similar except for the final

26
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Figure 4.1: Comparison of the present solution of 2PBVP with the scheme presented in [9]
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Table 4.1: Physical and mission constants

Constant Value
r0 6468.1 km
rf 6468.1 km
v0 8.2 km/s
vf 8.15 km/s
γ0 -0.02 rad
γf 0.0144 rad
t0 0 s
tf 300 s
R 1
ρs 1.752 kg/m3

H 7.045 km
Re 6378.1 km
g 9.81 m/s2

CD0
0.1

m/S 300 kg/m2

time which was left free in the case of the former, while it is fixed in the case of latter.

A major difference can also be observed with regard to the objective function, the

present case aims at minimizing the control effort while [9] intends to maximize the

negative non-dimensional exit velocity given by:

J = −v∗f = −ln
(

vf√
µRe

)
(4.1)

Fig.4.1 presents the comparison for the altitude, velocity, normal acceleration (control

variable in the present case) and heating rate of the spacecraft. The following are the

relative merits of the present scheme as opposed to the one used in [9]:

1. The minimum altitude of the trajectory in the present scheme is observed to be

smaller. It is important to note that the exit velocities for both schemes are

same. The spacecraft in the present scheme could achieve the same amount of

deceleration by descending to a smaller altitude.
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2. The magnitude of maximum control effort (normal acceleration) is also observed

to be considerably smaller.

3. The total control power required in the present scheme is observed to be smaller

by 22.324 m/s than that used in [9]. The total control power is the integral of

the control variable over t, from t0 to tf .

4. The maximum heating rate is smaller by 2.5 W/cm2 in the present scheme.

5. The variation of the control variable u (normal acceleration) over t is observed to

be linear for the given boundary conditions.

4.2 Time-Linearity of Optimal Control Law

From Figure 4.1 we can observe that the control variable u appears to vary linearly

with time. By considering the optimum control law given by (3.20) and differentiating

it with respect to time, an analytical expression for du/dt is obtained given by (4.2).

du

dt
=

(
−1

2R

)(
−λr cosγ +

λvg cosγ

v
+
λγ sinγ

r
+Kλγe

−(r−Re)/H
)

(4.2)

du

dt
=

(
−1

2R

)
(c1 + c2 + c3 + c4) =

(
−1

2R

)
c
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where,

c1 = −λr cosγ (4.3)

c2 =
λvg cosγ

v
(4.4)

c3 =
λγ sinγ

r
(4.5)

c4 = Kλγe
−(r−Re)/H (4.6)

c = c1 + c2 + c3 + c4 (4.7)

The variation of the four constituent terms in this equation (−λr cosγ, λvg cosγ
v

,

λγ sinγ

r
and Kλγe

−(r−Re)/H) with respect to time is plotted in Figure 4.2 and compared

with their sum (c). It can be observed that the contribution of c3 and c4 towards c is

negligible. So, the sum of c1 and c2 gives c, which varies only in the order of mm/sec3

and hence can be approximated to a constant.

4.3 Approximate Closed-form Solution with time-linear con-

trol

For the boundary conditions used in the nominal case discussed in the previous section,

the optimal control law can be approximated to a straight line with respect to its

variation in time, as described in Fig. 4.2. Closed-form solutions for (2.7) are not

common but with the assumption that the control law is linear in time, it is possible

to obtain an approximate one. Occasionally, it is also required to estimate the state
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Figure 4.2: Comparison between the various terms contributing to the control time derivative

of the AOT vehicle at a given instant of time. Solving the non-linear state equations

might prove to be computationally very expensive. Hence, there is a need to derive

approximate closed-form solutions for the state equations, so that the states can be

computed directly. An approximate closed-form solution for a time-linear control law

is derived and presented in this section. The time-linear control law is given by the

following expression.

u = a+ bt (4.8)

The following assumptions were made, to obtain the approximate solution:
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1. At any instant of time during the atmospheric pass, the flight path angle is

assumed to be small.

sinγ ≈ γ and cosγ ≈ 1 (4.9)

2. v2/rg called the Loh’s term[8] is assumed to be constant in the equation for the

flight path angle.

3. Speed of the AOT vehicle, v in equations for the radius and flight path angle are

assumed to be constant.

4. The term Ke−
r−Re
H v is assumed to be constant and equal to Ke−

ravg−Re
H v where

ravg is the average radial distance from the center of the earth.

The above assumptions applied on (2.7), lead to the following set of simpler equations.

dr

dt
= v0γ; (4.10a)

dv

dt
= −gγ − pv0v; p =Ke−

ravg−Re
H (4.10b)

dγ

dt
=
g(c− 1) + a+ bt

v0
; c =v20/r0g (4.10c)
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Figure 4.3: Comparison between the solution of 2PBVP and the approximate closed-form
solution
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Equation (4.10c) can be solved analytically and an expression for γ with respect to

time can be obtained as follows,

∫ γ(t)

γ0

dγ =

∫ t

0

(
g(c− 1) + a

v0

)
dτ +

∫ t

0

(
b

v0

)
τdτ (4.11)

γ(t) = γ0 +

(
g(c− 1) + a

v0

)
t+

(
b

2v0

)
t2 (4.12)

This expression can be substituted into (4.10a) and we have,

∫ r(t)

r0

dr =

∫ t

0

(
v0γ0 + (g(c− 1) + a) τ +

(
b

2

)
τ 2
)
dτ (4.13)

r(t) = r0 + (v0γ0)t+

(
g(c− 1) + a

2

)
t2 +

(
b

6

)
t3 (4.14)

Similarly (4.12) can be substituted into (4.10b), to get

dv

dt
+ pv0v = −gγ(t) (4.15)

Multiplying both sides with epv0t,

epv0t
dv

dt
+ pv0vepv0t = −gepv0tγ(t) (4.16)

d (vepv0t)

dt
= −gepv0tγ(t) (4.17)

vepv0t = v0 − g
∫ t

0

epv0τγ(τ)dτ (4.18)
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By solving the above equation, we have

v(t) = v0e
−pv0t +

(
g

pv0

)(
−γ0 +

g(c− 1) + a

pv02
− b

p2v03

)
(1− e−pv0t)

−
(
g

pv0

)(
g(c− 1) + a

v0
− b

pv02

)
t−
(
g

pv0

)(
b

2v0

)
t2 (4.19)

The approximate closed-form analytical solutions are given by (4.20), (4.21) and (4.22).

r =r0 + (v0γ0)t+

(
g(c− 1) + a

2

)
t2 +

(
b

6

)
t3 (4.20)

v =v0e
−pv0t +

(
g

pv0

)(
−γ0 +

g(c− 1) + a

pv02
− b

p2v03

)
(1− e−pv0t)

−
(
g

pv0

)(
g(c− 1) + a

v0
− b

pv02

)
t−
(
g

pv0

)(
b

2v0

)
t2 (4.21)

γ =γ0 +

(
g(c− 1) + a

v0

)
t+

(
b

2v0

)
t2 (4.22)

where ravg =r0 +
v0γ0

2
tf +

(
g(c− 1) + a

6

)
t2f +

(
b

24

)
t3f ;

p =Ke−
ravg−Re

H ;

A comparison between the approximate closed-form solution and the solution of two-

point boundary value problem is presented in Fig. 4.3. It can be observed that the

optimal trajectory is close to the trajectory obtained through the approximate closed-

form solution. It is important to note that the closed-form solution assumes that the

control law is linear, hence the validity of the closed-form solution depends on the

linearity of the optimal control law.
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Figure 4.4: Comparison between the various terms contributing to the control time derivative

4.4 Time-Linear Empirical Relation for Free Exit Velocity

As an alternative to the time-linearity study of the 2PBVP discussed in section 4.2,

a study was conducted to analyze the solution of section 4.1 if the exit velocity is

considered as a free boundary condition. It was observed that if the exit velocity is left

free, the time-linear solution is found to be typical and an analysis was done explaining

the reasons for linearity of the control law, in this case.

It can be observed from Figure 4.4 that c1 (−λr cosγ) has the maximum contribution

towards du/dt as compared to the other terms. Though it might appear that c1 is a

close approximation to c, it is important to note that the value of c1 at tf is a better

approximation than c1 itself and also makes the approximate du/dt a constant, as γ(tf )
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is very small. From Figure 4.1, we can see that u
∣∣∣
tf

reaches zero which gives us the

point (tf , 0). Hence, the Approximate Time Linear Optimal Control Law is given by

Eq (4.23).

u(t)
∣∣∣
approx

=

(
−λr(tf )

2R

)
(tf − t) (4.23)

Now let us investigate the assumption of constant slope from an analytical point of

view.

The slope of the control variable u will remain constant if:

du

dt

∣∣
t0

=
du

dt

∣∣
t0+h

= . . . =
du

dt

∣∣
t0+(n−1)h =

du

dt

∣∣
tf

The greater the number of conditions, the smaller will be the range of values satisfying

this condition. So, the least we can expect is for the slopes to be equal at t0 and

tf , hoping it wouldn’t change much in between. This would give us the following

expression:

λr(t0)−
λv(t0)g

v0
≈ λr(tf )−

λv(tf )g

vf

Typically we would want v0 − vf to be as high as possible, this would enforce a very

strict condition on λr(t0) and λr(tf ). This will not be the case if λv(tf ) is forced to be
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zero by making vf a free boundary condition. The above strict condition can be split

into two lenient conditions:

λv(tf ) = 0 (4.24)

λr(t0)−
λv(t0)g

v0
≈ λr(tf ) (4.25)

Hence, K1 was chosen to be zero. The following conditions influence (approximate)

linearity of u or the extent of it:

1. For (approximate) linearity of u at least Eq (4.24) has to be satisfied but satisfying

this condition does not ensure linearity.

2. If Eq (4.25) is satisfied then (approximate) linearity is ensured, the extent to

which this condition is violated will decide the extent of non-linearity.

From the above conditions, it can be seen that the linearity depends on the boundary

values of the Lagrange Multipliers. The boundary values of the Lagrange Multipliers

are influenced by the boundary values of the state vector. Hence, it can be concluded

that the linearity of u depends on the boundary conditions of the optimization prob-

lem. The boundary conditions in Table 4.1 sufficiently satisfy these conditions and

hence are considered as reference boundary conditions. It was observed that u stays

approximately linear if the given boundary conditions are in the same ratio as the

reference boundary conditions, for reentry Altitude (h0) ranging from 83 km - 115 km.

The following steps have to be followed:
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1. A reentry altitude (h0) betwwen 83 km - 115 km has to be chosen.

2. Reentry flight path angle (γ0) has to be obtained from Eq (4.26) for the chosen

h0.

γ0 = h0

(
−0.02

90

)
; where h0 is in km and γ0 is in rad (4.26)

3. Reentry Velocity (v0) has to be obtained from Eq (4.27) for the chosen h0.

v0 = h0

(
8.2

90

)
; where h0 is in km and v0 is in km/s (4.27)

The above boundary conditions, along with tf = 300 s (valid for tf < 400 s) can be

used to obtain a fairly linear solution for the optimization problem.

In Eq.(4.23), the value of λr(tf ) can be obtained only after solving the 2PBVP.

In order to avoid solving the 2PBVP, an empirical relation is obtained for λr(tf ) in

terms of the boundary conditions h0(= r0 −Re = rf −Re), v0, γ0 and fixed final time

tf . A variational approach was adopted, where three of these four values are kept

constant while the fourth one is varied and the variation in λr(tf ) is observed. This

process is repeated for the other three values and the results are presented in Figure 4.5.

Newton’s interpolation method is used to obtain empirical relationships between

λr(tf ) and the three boundary conditions along with tf considered separately. The

variation of λr(tf) with respect to v0 and γ0 is observed to be almost linear but thats
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Figure 4.5: Variation of co-radial Lagrange parameter with entry conditions
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not the case with h0 and tf . Considering the variation of λr(tf ) with respect to h0, it

can be observed that |λr(tf)| is at its minimum at an altitude of approximately 94km

for the case when v0 = 8.2 km/s, γ0 = −0.02rad and tf = 300 s. It is to be noted

that the deceleration in terms of v0 − vf decreases with increase in initial altitude h0.

So, it would be ideal to choose an initial altitude less than 94km, so as to get higher

deceleration for the same control effort as shown in Figure 4.6.

Using the data in Figure 4.5, an empirical relation for λr(tf )(in km/sec
3), given by

Eq (4.28), is obtained in terms of v0(in km/s), γ0(in rad), h0(in km) and tf (in s).

λr(tf )
∣∣∣
empirical

= −1.828523× 10−4 + 2.3363× 10−5v0 + 5.340875× 10−4γ0

+4.192336× 10−2/h20 − 1.910441× 102/h40

−1.3614626× 10−4e−0.01072041435tf (4.28)

Fig.4.7-4.8 present the comparison between the 2PBVP solution the solution using

the approximate time linear control law and the solution using the empirical relation

obtained in Eq.(4.28).
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Figure 4.6: Comparison of results between h0=90 km and h0=100 km, with v0=8.2 km/s,
γ0=-0.02 rad and tf=300 s using an approximate time-linear optimal control law
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Figure 4.7: Comparison between the solution of 2PBVP, results with approximate control law
and results obtained using empirical relation for reference boundary conditions
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Figure 4.8: Comparison between the solution of 2PBVP, results with approximate control law
and results obtained using empirical relation for boundary conditions proportional to the reference
ones
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Linear Quadratic Regulator

The AOT discussed here is from a HEO to a LEO involving a deorbit impulse at

the HEO, a pass through the upper reaches of atmosphere and a reorbit impulse at

the LEO. The reentry conditions for the atmospheric pass essentially depend on the

deorbit impulse, if this impulse is not executed as planned it might lead to different

reentry conditions. Hence, it would be helpful to have a feedback control system which

can compensate the initial perturbations during reentry and ensure the AOT vehicle

exits with desired conditions. Naidu et al. [12] emphasizes on the need to take the

possibility of deviations in initial conditions into account. Such deviations might affect

the outcome of a mission as they might lead to deviations in exit conditions which is

not desirable. Hence, linear quadratic regulator is chosen to compensate the expected

45
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deviations in initial conditions for the linearized state equations given by (5.1).

δẋ = Aδx +Bδu (5.1)

where,

A =


0 sinγd vdcosγd

(K/H)e−(rd−Re)/Hv2d −2Ke−(rd−Re)/Hvd −gcosγd

−vd/rd2
(

1
rd

+ g
vd2

)
cosγd − ud

vd2
−
(
vd
rd
− g

vd

)
sinγd

 ; (5.2)

B =


0

0

1/vd


(5.3)

and

δx(t0) (5.4)

is the initial perturbation to be compensated. The matrices A and B are frozen at t = 0,

so that (5.1) becomes linear-time invariant system. It is also observed that (A,B) is

controllable. The following LQRs were designed and the results are presented.
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5.1 Infinite-Time LQR

In this section, an infinite-time tracking linear quadratic regulator is implemented as

described in [17]. The regulator is designed for a set of linearized state equations given

by (5.1) to minimize the following cost function:

J =
1

2

∫ ∞
t0

(δxTQδx + δuTRδu)dt (5.5)

where, R = 3.33× 107; Q =


0.33 0 0

0 3.3× 105 0

0 0 3.3× 105

 (5.6)

Additionally, (A,
√
Q) is found to be observable. The control law for this regulator is

given by,

δu = −kTδx (5.7)

with

kT = R−1BTM0 (5.8)

where M0 is the solution of the following algebraic Riccati equation

ATM0 +M0A−M0BR
−1BM0 +Q = ∅ (5.9)
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This LQR is implemented and the results are presented in Fig. 5.1. It can be observed

that the regulator fails to reach the exit conditions for altitude and flight path angle,

which is undesirable. Various sets of Q and R were tried by trail and error and the

respective % error in Altitude, velocity and flight path angle are presented in Table 5.1.

It can be observed from the table that among a wide range of Q and R values the ones

used in implementing the LQR in this section prove to have the best performance and

yet it is not sufficient to satisfy the exit conditions.

Table 5.1: Performance analysis of infinite time LQR

Q(1,1) Q(2,2) Q(3,3) R % Error in h % Error in v % Error in γ
3.3× 10−1 3.3× 105 3.3× 105 3.3× 101 −8.330947× 10−1 −7.674506× 10−3 1.328529× 10−4

3.3× 10−1 3.3× 105 3.3× 105 3.3× 103 −8.312663× 10−1 −7.626646× 10−3 1.302752× 10−4

3.3× 10−1 3.3× 105 3.3× 105 3.3× 105 −8.136856× 10−1 −7.266482× 10−3 1.625764× 10−4

3.3× 10−1 3.3× 105 3.3× 105 3.3× 106 −8.149946× 10−1 −6.148191× 10−3 3.622559× 10−4

3.3× 10−3 3.3× 105 3.3× 105 3.3× 106 −6.685509× 10−1 −7.426417× 10−3 4.637773× 10−4

3.3× 10−5 3.3× 105 3.3× 105 3.3× 106 −6.676998× 10−1 −7.439671× 10−3 4.646589× 10−4

3.3× 10−5 3.3× 103 3.3× 105 3.3× 106 −1.870836 2.218201× 10−2 −9.037782× 10−4

3.3× 10−5 3.3× 106 3.3× 105 3.3× 106 −9.089321× 10−1 −1.792623× 10−2 −1.288355× 10−3

3.3× 10−5 3.3× 107 3.3× 105 3.3× 106 −2.184688 −2.715541× 10−2 −1.952334× 10−3

3.3× 10−3 3.3× 105 3.3× 105 3.3× 107 −1.752500 −7.499659× 10−4 1.269265× 10−3

3.3× 10−5 3.3× 105 3.3× 105 3.3× 107 −1.753156 −7.559092× 10−4 1.269595× 10−3

3.3× 10−5 3.3× 106 3.3× 105 3.3× 107 1.248446× 10−1 −1.353054× 10−2 −4.437157× 10−4

3.3× 10−5 3.3× 106 3.3× 105 3.3× 107 1.248446× 10−1 −1.353054× 10−2 −4.437157× 10−4

3.3× 10−5 1.6× 106 3.3× 105 3.3× 107 −4.032234× 10−2 −1.063721× 10−2 5.250472× 10−4

3.3× 10−1 1.6× 104 3.3× 105 3.3× 107 −2.332694 2.013555× 10−2 −4.883690× 10−4

3.3× 10−1 1.6× 105 3.3× 105 3.3× 107 −2.346540 5.351797× 10−3 8.535150× 10−4

3.3× 10−1 1.6× 106 3.3× 103 3.3× 107 1.747784× 10−1 −1.179445× 10−2 3.113647× 10−4

3.3× 10−1 1.6× 106 3.3× 104 3.3× 107 1.716576× 10−1 −1.160233× 10−2 3.448520× 10−4

3.3× 10−1 1.6× 106 3.3× 105 3.3× 107 −9.101259× 10−2 −1.024035× 10−2 4.822324× 10−4

3.3× 10−1 1.6× 106 3.3× 106 3.3× 107 −1.327279 −2.745046× 10−3 6.353175× 10−4

3.3× 10−1 1.6× 106 6.6× 106 3.3× 107 −1.852259 1.168006× 10−3 4.461293× 10−4

3.3× 10−1 1.6× 106 3.3× 107 3.3× 107 −2.424546 1.145404× 10−2 −3.463410× 10−4

3.3× 10−1 1.6× 106 1.6× 106 3.3× 107 −8.314880× 10−1 −6.198634× 10−3 6.769417× 10−4

3.3× 10−1 1.6× 106 1.6× 106 3.3× 108 −2.373855 3.485764× 10−3 1.123891× 10−3

3.3× 10−1 1.6× 106 1.6× 106 3.3× 106 −7.140788× 10−1 −8.136526× 10−3 2.283034× 10−4

3.3× 10−1 1.6× 106 1.6× 106 3.3× 105 −7.320844× 10−1 −8.557474× 10−3 1.704078× 10−4

3.3× 10−1 1.6× 106 1.6× 106 3.3× 103 −7.401844× 10−1 −8.757698× 10−3 1.619790× 10−4

3.3× 10−1 1.6× 106 1.6× 106 3.3× 101 −7.392028× 10−1 −8.756616× 10−3 1.621789× 10−4

3.3× 10−1 3.3× 105 3.3× 105 3.3× 107 −1.684028 −1.429151× 10−5 1.239149× 10−3
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Figure 5.1: Comparison between the desired trajectory and the trajectory with perturbed initial
state using an infinite time LQR
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5.2 Terminal-Time LQR

In this section, a terminal-time tracking linear quadratic regulator is implemented as

described in [17]. The regulator is designed for a set of linearized state equations to

minimize the following cost function:

J =
1

2
δxf

TV δxf +
1

2

∫ tf

t0

(δxTQδx + δuTRδu)dt (5.10)

where, R = 1; Q =


0 0 0

0 0 0

0 0 0

 ; V =


1 0 0

0 0.5 0

0 0 0.05

 ; (5.11)

The control law for the terminal time LQR is given by,

δu = −kTδx (5.12)

with

kT = R−1BTM0 (5.13)

where M0 is the solution of the following Riccati equation

ATM0 +M0A−M0BR
−1BM0 +Q = −∂M0

∂t
(5.14)
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subject to the terminal condition,

M0(tf ) = V (5.15)

The solution to the matrix Ricatti equation is given by, (see [17])

M0 = EF−1 (5.16)

with,


F

E

 = eH(t−tf )


F (tf )

E(tf )

 (5.17)

where,

H =

 A −BR−1BT

−Q −AT

 (5.18)

The initial state of the trajectory is perturbed from the desired trajectory and the

above terminal time tracker is implemented to track the desired trajectory. The weight-

ing matrices given above indicate that the emphasis is on minimizing the deviations

in the states at terminal time. The linearized state equations for the system are given

by (5.1). The terminal time LQR is applied to these state equations. A comparison

between the desired trajectory and the trajectory with perturbed initial state using
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Figure 5.2: Comparison between the desired trajectory and the trajectory with perturbed initial
state using a terminal time LQR
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terminal time LQR is presented in Fig. 5.2. It can be clearly observed that there

is a significant increase in control effort, magnitude of maximum control input and

maximum heating rate (as the minimum altitude is smaller). Table 5.2 presents the

performance analysis for the terminal time LQR where various combinations of Q, R

and V were attempted and it can be seen that the best case was chosen.

Table 5.2: Performance analysis of terminal time LQR

Q(1,1) Q(2,2) Q(3,3) R V(1,1) V(2,2) V(3,3) % δh % δv % δγ |u|max

0 0 0 1 1 0.5 0.1 5.66× 10−3 2.51× 10−2 4.85 3.013
0 0 0.02 1 1 0.5 0.1 7.86× 10−3 1.58× 10−1 2.62 3.015
0 0.02 0 1 1 0.5 0.1 8.32× 10−3 2.27× 10−1 -0.99 3.026
0 0.02 0.02 1 1 0.5 0.1 1.13× 10−2 2.71× 10−1 -1.51 3.012

0.0002 0 0 1 1 0.5 0.1 6.57× 10−3 2.75× 10−1 -0.89 3.685
0.0002 0.02 0.02 1 1 0.5 0.1 7.34× 10−3 2.76× 10−1 -0.98 3.694

0 0 0 1 1 0.5 0.2 7.27× 10−3 2.84× 10−3 8.91 3.028
0 0 0 1 1 0.5 0.05 6.83× 10−3 3.73× 10−2 2.62 3.015
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Predictive Time-Linear Control

The terminal-time tracking system presented earlier suffers from two major drawbacks;

the magnitude of the total control effort involved is larger and the maximum heating

rate experienced by the AOT vehicle is higher, both of which are highly undesirable

demanding a better control methodology to compensate for the deviations in reentry

conditions. At this juncture we would like to draw some attention to the time linear

property of the optimal control law. Having a linear control law in time can be very

useful during the implementation phase as it can be easily implemented using a simple

timing mechanism. Moreover, it is very easy to store this control law as we need to

store only three parameters which are the control input at t=0, the slope of the control

input with respect to time and the terminal time (referred as a, b and tf respectively)

instead of storing the entire control profile. Employing a tracking system is necessary

for the following reasons:

54
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1. If the vehicle re-enters the atmosphere with a higher speed than expected.

2. If the vehicle re-enters with a flight path angle different from the one used in the

nominal case.

3. If the controller is deployed at a higher or a lower altitude as compared to the

re-entry altitude.

In all the three scenarios mentioned above, there is a very good chance that the AOT

vehicle might not exit the atmosphere with the desired conditions using the optimal

control law obtained for the nominal case, which is crucial for the success of the mission.

Hence, the control law will have to be adjusted in order to take the perturbed initial

conditions into account. As the linearity of the control law obtained in the nominal case

depends mainly on the boundary conditions, it is possible that the optimal control law

obtained for the perturbed initial conditions might not result in a time-linear control

profile. It is important to note that the optimal control law for the nominal case

was obtained for a fixed final time condition and as far as the mission statement is

concerned it is only important to exit the atmosphere with the desired exit conditions.

So, the deviations in the initial conditions can be accounted for by spending a greater

or a lesser amount of time inside the atmosphere depending on the initial conditions.

But this still does not ensure that the control profile will be linear in time. So, we

pose a new problem statement for the given mission. For the given perturbed initial

conditions and desired exit conditions in order to obtain a time-linear control law what

is the total time that is required to be spent within the atmosphere by the AOT vehicle
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and what are the values of a and b for this law?

As the above problem statement does not require the trajectory to be optimal, we

can drop the costate equations in (3.21) and use only the state equations (2.7) with the

control law given by (4.8) along with six boundary conditions completely describing

the states of the vehicle at initial (perturbed initial conditions) and final time (which

is free). Instead of solving a 2PBVP for a system of three first order ODEs with three

unknown parameters (a, b and t′f ) and six boundary conditions, we consider solving a

2PBVP for a system of five first order ODEs and five boundary conditions as shown

in (6.1) and (6.2) with fixed terminal time t′f in order to ensure greater success in

obtaining the solution.



ṙ

v̇

γ̇

ȧ

ḃ


=



v sinγ

−g sinγ −Ke−( r−ReH )v2

(v/r − g/v) cosγ + (a+ bt)/v

0

0


(6.1)


r(t0)

v(t0)

γ(t0)


=


r′0

v′0

γ′0


;


r(tf )

v(tf )

 =


rf

vf

 ; (6.2)
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Then a Newton-Raphson technique (6.3) is used to iteratively find t′f so that the exit

flight path angle equals the desired flight path angle, as in the case of shooting method,

using the closed form approximation (4.22) to obtain the partial derivative of the exit

flight path angle (γ(t′f )) with respect to the final time (t′f ).

t′f =t′f +
γ(t′f )− γf

∂γ(t′f )

∂t′f

(6.3)

where,
∂γ(t′f )

∂t′f
=

(
g(c− 1) + a

v0

)
+

(
b

v0

)
t′f (6.4)

The block diagram for the predictive time-linear control algorithm described here is

presented in Fig. 6.1. Through this exercise, we can obtain t′f which is the new final

time for the perturbed initial conditions. The values of parameters a and b obtained

from the final 2PBVP solved will define the time-linear control profile required for the

maneuver which satisfies all the given six boundary conditions.

The only question to be answered now, is this time-linear control law an optimal

one or not? If not then how close or how far is it from the optimal solution? In

order to answer these questions, a comparison between the trajectory obtained using

predictive time-linear control and the optimal trajectory for the same six boundary

conditions with t′f as the final time is presented in Fig. 6.2. It can be observed that the

optimal control input profile is close to the time-linear one. The former is observed to

be oscillating about the latter thus making the cost function approximately the same

for both the cases, which is the time integral of the square of the control input. Hence
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Start

Input boundary
conditions, given
in (6.2) and γf

Guess
t′f = tf

Formulate
2PBVP, as shown
in (6.1) and (6.2)

Use fixed
terminal time t′f

Solve (6.1) and (6.2), as
described in Chapter 4.1

If
|γ(t′f )−γf | ≥ TOL

t′f = t′f +
γ(t′f )−γf
∂γ(t′f )/∂t

′
f

Output a,
b and t′f

End

Figure 6.1: Block diagram for predictive time-linear control
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Figure 6.2: Comparison between the time-linear control and the optimal control trajectories
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instead of using an optimal control law which is generally non-linear in nature, we can

use a time-linear control law that helps satisfy all the six boundary conditions and at the

same time also proves to be almost optimal. Fig. 6.3 presents the comparisons between

the trajectories generated through time-linear control and the optimal trajectories for

three different initial conditions and yet leading to the same exit conditions.

As discussed earlier, the time-linear control law requires only three parameters to

be mentioned which are the control input at t=0 (a), the slope of the control input with

respect to time (b) and the new final time (t′f ). In order to study the impact of the

various perturbed initial conditions on the control profile, it is important to study the

impact on these three parameters. Hence, an extensive study was done on the impact

of the various perturbed initial altitudes on the three parameters a, b and t′f with all

the other boundary conditions staying unchanged. The same is repeated for variations

in initial velocity and initial flight path angle. This analysis gives us an insight into

the effect on the control profile due to the perturbed initial conditions and is presented

in Figs. 6.4- 6.6.
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Figure 6.3: Comparison between the time-linear control and the optimal control trajectories for
various perturbed initial conditions
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Figure 6.4: Variation of the three parameters a, b, tf and the magnitude of the control effort
with respect to the change in initial altitude
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Figure 6.5: Variation of the three parameters a, b, tf and the magnitude of the control effort
with respect to the change in initial velocity
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Figure 6.6: Variation of the three parameters a, b, tf and the magnitude of the control effort
with respect to the change in initial flight path angle
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Robust Feedback Control

7.1 Robust Feedback Control

A robust feedback control law is obtained in order to compensate for the stochastic

nature of the ballistic parameter which is modeled by randomly choosing a value about

±20% of the nominal value, used upto this point. In order to be able to obtain a

control law that could give a satisfactory response, it is important to revisit the plant

state equations from (2.7) and investigate the impact of the control input on various

state variables. While the stochastic nature of the drag coefficient impacts mainly

the velocity, the control input is applied to control the flight path angle and through

that control velocity and altitude. Upon inspecting the state equation for the flight

path angle we can conclude that the rate of change of flight path angle has a linear

dependence on the ratio of control input (u) and velocity (v). Considering a linear

feedback control with constant gains for the error terms corresponding to altitude and

65
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velocity while the gain corresponding to error in flight path angle is taken directly

proportional to the velocity of the vehicle. The feedback control input for the robust

feedback control is represented by ∆u, while the errors in the radial distance, velocity

and flight path angle are given by ∆r, ∆v and ∆γ. Equation (7.1) gives the feedback

control input for the system.

∆u = −κr∆r − κv∆v − κγ∆γ (7.1)

where, (7.2)

κr = 1.086957× 10−4 (7.3)

κv = 6.082725× 10−2 (7.4)

κγ = 0.526vm (7.5)

It can be observed from Fig. 7.1 that the errors in all the three states are diverging

away from the zero error line when there is no feedback, while they converge to a value

closer to zero when the robust feedback control system is deployed. On the other hand,

Fig. 7.2 presents a comparison between the nominal trajectory which is an ideal case

where there is no uncertainty in ballistic parameter with various trajectories where the

stochastic nature of the ballistic parameter is compensated using the robust controller.

It can be observed that the robust controller with linear feedback provides satisfactory
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Figure 7.1: The errors in states and adaptive control input for the case using robust controller
as compared to the one without
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Figure 7.2: Comparison between the nominal trajectory and various test cases of trajectories
using robust controller
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Figure 7.3: Comparison between the nominal trajectory and various test cases of trajectories
using terminal time LQR
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performance. In order to be able to appreciate the simplicity and superiority of this

scheme, a terminal time LQR presented in chapter 5.2 is used to compensate for the

stochastic nature of the ballistic parameter and the results are presented in Fig. 7.3.



8

Adaptive Control

Predictive time-linear control methodology discussed in chapter 6 deals with adjusting

the slope, initial control input and final time of a nominal time-linear control input

to account for deviations in initial conditions. This methodology assumes a specific

model for the plant defined by certain parameters to develop the new time-linear control

law which would be effective only under the assumption that these parameters don’t

change. The parameters for this model are acceleration due to gravity (g) and the

ballistic parameter (K). The change in acceleration due to gravity over the small

range of altitudes involved in an aeroassist maneuver can be safely neglected, while it

is important to investigate the constituent terms in the ballistic parameter to comment

on its nature.

71
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8.1 Predictive Adaptive Control

The base density of the atmospheric model assumed may not necessarily be the ex-

pected one and it is not possible to estimate the exact value of CD0 before reentry,

having a different value for the ballistic parameter would lead to different exit condi-

tions as compared to the desired ones. If this change in ballistic parameter is known

a priori, it is possible to use this new value of K in the predictive time-linear control

model and obtain the values of a, b and t′f such that the exit conditions are met. An

analysis on the predictive time-linear control law is done for a range of values about

the nominal value of the ballistic parameter assumed is presented in Table 8.1. The

ballistic parameter can be estimated at reentry using

K = −
(
v̇ + gsinγ0
exp−h0/Hv20

)
(8.1)

where, v̇ can be measured using accelerometers. If this value of K turns out to be

different from the one assumed in the predictive time-linear control method, it would

lead to a different exit condition. Based on the information given in the Table 8.1, plots

were made to show the variation of a, b and tf with respect to the ballistic parameter

K and given in Fig. 8.1. It can be observed that the variation of a, b and tf with

respect to K is linear, which is very helpful as a straight line can be fitted through the

data and an empirical expression is obtained given in Eq. (8.2)- (8.4).
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Table 8.1: Ballistic parameter variation

Ballistic Parameter (1/m) a (m/s2) b (m/s3) tf (s)
∫
|u|dt (km/s)

0.0002336 0.633419201 -0.002032061 332.2244687 0.099148864
0.00024 0.650203935 -0.002105412 327.9266633 0.100782653
0.00025 0.672450161 -0.002173017 322.6315003 0.104234172
0.00026 0.700237749 -0.002317169 315.7716585 0.106015604
0.00027 0.719831922 -0.002358413 311.6257794 0.109901126
0.000292 0.769349796 -0.002546601 300.9622284 0.116211703
0.0003 0.789657293 -0.002651214 296.6114613 0.117596641
0.00031 0.813292134 -0.00276172 291.7738226 0.119741458
0.00032 0.832813066 -0.002818261 288.1658147 0.122973347
0.00033 0.855070656 -0.002916361 283.9241124 0.12522635
0.000335 0.868977731 -0.003006461 281.1239682 0.125488569

a (m/s2) = 2.32306K + 0.090752 (8.2)

b (m/s3) = (−8.99571K + 0.0623299)× 10−3 (8.3)

tf (s) = −503.94971K + 448.94712 (8.4)

It is important to note that, as the value of the ballistic parameter is increased we

can observe a gradual reduction in final time which is intuitive. The increase in ballistic

parameter can be perceived in terms of a higher base density for the atmospheric

model assumed, which would also mean that the AOT vehicle can be decelerated faster

and thus would require to spend lesser amount of time inside the atmosphere. The

comparison between the case where the nominal value for ballistic parameter is used

and the case where a perturbed one is used, is presented in Fig. 8.2. It can be observed

that the reentry and exit conditions remain the same, while the two trajectories follow

different paths. This depicts the role of ballistic parameter in shaping the predictive

time-linear control trajectory. This method can be implemented onboard but offline,
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Figure 8.1: Variation of a, b and tf with respect to the ballistic parameter K and comparison
with the empirical expression



8. ADAPTIVE CONTROL 75

Figure 8.2: Comparison between the nominal trajectory and various test cases of trajectories
using adaptive controller
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hence real time adaptation is not a viable option due to the long times involved in

computation. Hence, there is a need to develop a feedback adaptive control system to

handle real time changes in the ballistic parameter.

8.2 Real-time Feedback Adaptive Control

By inspecting the constituent terms involved in the expression for ballistic parameter

from (??), we can conclude that CD0 may not necessarily be constant throughout the

maneuver as it depends on Mach Number and the effect of shock on the magnitude of

the coefficient of drag may vary from one angle of attack to another.

8.2.1 Formulation

In order to incorporate this change in ballistic parameter into the system, a ±20% un-

certainty is introduced which needs to be compensated by the adaptive control system.

In order to do so, the following proposition is suggested,

Proposition. Let e ∈ R3 and ∆u ∈ R be the error in the states and the control input

required for the linearized state equations given by,

ė = Ae +B∆u (8.5)

where A and B are given by (5.2) and (5.3). Factoring the stochastic nature of K,

it is assumed that A is not entirely deterministic. Let the control law employed be a
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Proportional-Differential (PD) one and be given by,

∆u = −ηΘTe−ΨΘT ė (8.6)

where, Θ ∈ R3 be the adaptation gain vector, η ∈ R and Ψ ∈ R are the proportional

and differential design constants to be chosen. Considering the Lyapunov function,

V =
Φ

2
eTPe + (Θ−Θ0)

T (Θ−Θ0) (8.7)

where, Φ ∈ R is a positive adaptation constant and P is a symmetric positive definite

coefficient matrix. Then, the adaptive control law

∆u = −ΘT

(
ηI + ΨA

1 + ΨΘTB

)
e (8.8)

and the adaptation law

Θ̇ =
ηΦ

1 + ΨΘTB
(eBTPe) (8.9)

are proven to exhibit asymptotic stability.
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Proof. Substituting (8.5) in (8.6), we get

∆u = −ηΘTe−ΨΘT (Ae +B∆u) (8.10)

(1 + ΨΘTB)∆u = −ΘT (ηI + ΨA)e (8.11)

∆u = −ΘT

(
ηI + ΨA

1 + ΨΘTB

)
e (8.12)

Substituting (8.12) in (8.5),

ė = Ae−BΘT

(
ηI + ΨA

1 + ΨΘTB

)
e (8.13)

ė =

((
I − ΨBΘT

1 + ΨΘTB

)
A− ηBΘT

1 + ΨΘTB

)
e (8.14)

Let,

Am =

(
I − ΨBΘT

1 + ΨΘTB

)
A− ηBΘT

0

1 + ΨΘTB
(8.15)

=⇒ A =

(
I − ΨBΘT

1 + ΨΘTB

)−1(
Am +

ηBΘT
0

1 + ΨΘTB

)
(8.16)

where,

Am =


0 sinγd vdcosγd

0 −2Kexp−(ravg−Re)/Hvd −gcosγd

−vd/rd2
(

1
rd

+ g
vd2

)
cosγd − ud

vd2
−
(
vd
rd
− g

vd

)
sinγd

 (8.17)
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Substituting (8.16) in (8.14),

ė =

(
Am −

ηB(Θ−Θ0)
T

1 + ΨΘTB

)
e (8.18)

Differentiating the Lyapunov function in (8.19) with respect to time, we get

V̇ =
Φ

2
ėTPe +

Φ

2
eTP ė + (Θ−Θ0)

T Θ̇ (8.19)

Substituting (8.18) in (8.19) , we have

V̇ =
Φ

2
eT (ATmP + PAm)e− Φ

2
(Θ−Θ0)

T2ν

(
eBTPe

1 + ΨΘTB

)
+ (Θ−Θ0)

T Θ̇ (8.20)

From continuous Lyapunov equation [18], we have

ATmP + PAm = −Q (8.21)

where Q is positive definite, if P is positive definite and Am is asymptotically stable. Am

being time-varying matrix, can be proven to be exponentially stable using the sufficient

conditions for stability of linear time-varying systems [19]. These sufficient conditions

require all the eigen values of Am to be negative from t0 to tf and the ||Ȧm|| ≤ δ provided

δ > 0 is sufficiently small. From Fig. 8.3, it can be observed that all the three eigen

values of Am are negative and the norm of Ȧm is bounded. Using (8.21) in (8.20), we
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Figure 8.3: The variation of the three eigen values of Am and the norm of Ȧm with respect to
time
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have

V̇ = −Φ

2
eTQe + (Θ−Θ0)

T

(
Θ̇−

(
ηΦ

1 + ΨΘTB

)
eBTPe

)
(8.22)

Let,

Θ̇ =

(
ηΦ

1 + ΨΘTB

)
eBTPe (8.23)

From (8.22) and (8.23), we have

V̇ = −Φ

2
eTQe (8.24)

From Equation (8.21), Q is positive definite and Φ is a positive number. This would

make,

V̇ < 0 (8.25)

From Equation (8.25) and the Lyapunov theorem for stability [18], it can be concluded

that the system (8.5) using the control law (8.8) and the adaptation law (8.9) exhibits

asymptotic stability.
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Figure 8.4: The errors in states and adaptive control input for the case with adaptation as
compared to the one without
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8.2.2 Implementation

The adaptive control methodology formulated above is implemented on the system

given by (2.7) to compensate for the uncertainty involved in estimating CD0 (ballistic

parameter, K). For this adaptive control problem, e = {∆h ∆v ∆γ}T and Θ =

{θh θv θγ}T with Φ = 1, η = 0.1, Ψ = 0.1, Θ0 = {8.696× 10−3 54.745 526.316}T

and

P =


0.1 0 0

0 0.05 0

0 0 10



Using the above design constants, an adaptive control system is implemented and

a comparison is presented between the case with adaptation and the one without in

Fig. 8.4. It can be clearly observed that the error in altitude and flight path angle

diverge from the zero error line when there is no adaptation while they settle to a value

closer to zero with adaptation. In the case of error in velocity, the adaptive controller

ensures that the error settles to a value closer to the zero error line as compared to

the case where there is no adaptation. In order to exhibit the effectiveness of the

adaptive control methodology, a comparison between the nominal trajectory which is

an ideal case with no uncertainty in ballistic parameter with various trajectories using

the adaptive controller to compensate for the stochastic nature in ballistic parameter is
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Figure 8.5: Comparison between the nominal trajectory and various test cases of trajectories
using adaptive controller
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Figure 8.6: Comparison between the nominal trajectory and various test cases of the stochastic
plant response with no adaptation



8. ADAPTIVE CONTROL 86

presented in Fig. 8.5. The performance of this adaptive controller can be appreciated

by comparing it with Fig. 8.6 where no adaptation was used. It can also be observed

that the adaptive control law has lesser chattering as compared to the robust feedback

control law which would reduce the overall control effort considerably.
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Review of the Scheme

At this point, it is important to revisit the complete mission plan for optimal aeroas-

sisted orbital transfer. To start with, a deorbit impulse is applied at the circular HEO

to instantly reduce the velocity of the spacecraft and put it into an elliptic transfer

orbit with perigee altitude low enough to allow reentry into the Earth’s atmosphere.

As the spacecraft is approaching the Earth’s atmosphere the reentry conditions are

estimated and the predictive time-linear control methodology is used to obtain a near

optimal time-linear control law. Just moments before reentry, the ballistic parameter

is estimated using the accelerometer data and if it is found to be different from the one

assumed in the predictive time-linear control, the empirical relation from predictive

adaptive control is used to adjust the time-linear control profile to ensure the desired

exit conditions are met. After entering the Earth’s atmosphere, the real time adap-

tive controller is used to adapt to changes in the ballistic parameter and help meet

87
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Figure 9.1: Block diagram for the suggested scheme

the desired exit conditions. After exiting the Earth’s atmosphere with these desired

conditions, a reorbit impulse is applied at the apogee of the transfer elliptical orbit.

Thus putting the spacecraft into the desired circular LEO. The timeline for the entire

mission is presented in Fig. 9.3.

The block diagrams for the suggested scheme using a combination of predictive time-

linear, predictive adaptive and real time adaptive control methodologies is presented

and compared with the existing scheme using a combination of optimal trajectory

planning and robust control methodologies in Fig. 9.1 and 9.2.
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Figure 9.2: Block diagram for the existing scheme

Figure 9.3: Timeline for the Mission



10

Conclusions

The present work deals with optimal aeroassisted orbital transfer from a HEO to

a LEO where the part of the trajectory inside the planet’s atmosphere is considered for

optimization. The solution of the 2PBVP developed from the Euler-Lagrange equa-

tions has proven to be beneficial over the one presented in [9] in terms of the magnitude

of maximum control input, magnitude of total control power, maximum heating rate

and ease of implementation of the optimal control law. Such a control law was observed

to be linear in time. Upon further study, it was concluded that a time-linear control

law can be obtained for the case with free exit velocity provided the reentry conditions

are in a specific ratio. Additionally, an empirical relationship was obtained to derive

this control law in terms of the reentry conditions so as to avoid solving the compu-

tationally expensive two-point boundary value problems. An approximate closed-form

solution for the state equations with a time-linear control law was derived and was

90
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found to be closer to the numerical solution.

It is likely that, occasionally the AOT vehicle might approach the planet’s atmo-

sphere with a different reentry condition instead of the expected one. In such cases,

it is important to compensate for the initial perturbation by applying a higher control

input. In order to achieve this, a terminal time LQR and an infinite time LQR were

implemented. The terminal time LQR was observed to provide better compensation

for the initial perturbation as compared to the infinite time LQR but requires a higher

magnitude of control input and also experiences greater heating rate which are unde-

sirable.

Alternatively, a novel method called the predictive time-linear control was suggested

to compensate the initial perturbation at reentry by adjusting the initial control input

(a), slope of the control input with respect to time (b) and terminal time (t′f ) for a

time-linear control law where the initial perturbations are known a priori. This predic-

tive time-linear control profile was observed to be very close to the optimal solution for

the same terminal time which would imply that the predictive time-linear control is a

near optimal method.An analysis was done on the variation of a, b and t′f with respect

to perturbed reentry conditions.The predictive time-linear controller is shown to adjust

a, b and t′f not only with respect to initial perturbations but even for a change in the

ballistic parameter.

The predictive time-line control cannot be applied to adapt to real time changes in

the ballistic parameter, especially if it is stochastic in nature. In order to be able to
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reach the desired exit conditions a robust feedback controller is designed and shown

to compensate upto ±20% change in the ballistic parameter.The performance of the

robust feedback controller is compared to that of a terminal time LQR in compensating

for the stochastic nature of the ballistic parameter and the robust feedback controller

is shown to exhibit better performance.

Alternatively, an adaptive control methodology is formulated and implemented to

compensate for the uncertainty in ballistic parameter. This methodology is proven

to make the system asymptotically stable and has provided satisfactory performance

when applied to the AOT vehicle. The adaptive control law obtained is shown to have

much less chattering as compared to that of the robust feedback controller for the same

performance reducing the overall control effort required.
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